
1 Introduction: biology as a quantitative
science

It is clear that today biology is influencing human
thinking, perception, and action in an increasing
number of different ways. The 21st century is seen
as the century of biology (Venter and Cohen, 2004).
Life sciences' historical route from genetics to
genomics, now approaching and establishing syn-
thetic biology shows its impact, not only on bio-
logical basic research, but also on the different dis-
ciplines of biotechnology, medicine, pharmacolo-
gy, and last but not least, agricultural science. Con-
sequently, there is a corresponding influence on
the life science industry, including pharmaceutical
industry, diagnostic industry, medical product indus-
try, food as well as dietary supplement industry,
and agricultural industry.

In a more general view the combination of biol-
ogy, statistics, and mathematics has been termed
quantitative biology (Zhang, 2013). The notion of
quantitative biology may sound a little bit unfa-
miliar today. We are rather used to talk and hear
about bioinformatics, computational biology, bio-
metry, biostatistics, biomathematics, and similar
disciplines, all of which share the combination of
biology with some other scientific discipline, which

is related to calculation, modeling, and computing.
Though in the past, biology itself has been recog-
nized as a predominantly descriptive science (Mayer,
1997), the roots of a quantitative view are fairly old,
as can be seen in the proceedings of the first Cold
Spring Harbor Symposium on Quantitative Biolo-
gy, which Reginald Harris organized in 1933 (Witkom-
ski, 2018). This may be seen as a reaction to the early
20th century discussion about biology as an
autonomous science, or just a sub-discipline of
physics and chemistry (Mayer, 1997). 

Today, biology has established as a science of
information, driven by molecular biology, genetics,
and genomics. Functional genomics, as well as
metabolomics have produced data that demon-
strate the existence and importance of complex
pathways and networks in living cells and organ-
isms. The complexity of biological systems appears
to be much higher than in today's technological
implementations, which has become evident in
applying, e.g. non-equilibrium thermodynamics,
synergetics, and chaos theory (Haken, 1983) to bio-
logical phenomena. Hence, it is not at all surpris-
ing that advanced methods of mathematics, sta-
tistics, and information theory are becoming rou-
tine tools in biology (Green et al., 2005), as well as
in the related sciences medicine, and agricultural
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Life science research and life sciences' industries are facing an overwhelming com-
plexity of biology. Today's scientific methods and technologies allow for a very detai-
led look at biology. What is left to do, is understanding and interpretation. Quanti-
tative biology, the close coupling of life sciences, mathematics, and statistics is like-
ly to provide the methodologies to turn collected data into dedicated information
and knowledge. The most promising approach is the formulation of mathematical
models on the basis of machine learning. The predictive power of such an approach
is a promising option for basic biological research, medicine, pharmacology, agricul-
tural science, and ecology. Furthermore, also R&D of related life sciences industries
can take advantage of this digital approach to meet future challenges and market
requirements. Quantitative biology plays the role of an enabling technology. 
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science (Yuan et al., 2008). This is paralleled by a
change of view in biology, which is characterized
by growing popularity of the notions of network
and ecosystem, even beyond neuroscience and
microbiology. Not only do biologists nowadays talk
about systems biology (Ideker et al., 2001), but also
systems (bio)medicine (Lenoir, 1999)(Liu, 2010)(Ayers,
2015)(Maurya, 2010) has become an emerging con-
cept in medicine, pharmacology, and diagnostics
(Abu-Asab, 2011). 

2 An owerview of quantitative biology

At the beginning of the 20th century, quantita-
tive biology was applied to only a few particular
problems, mainly in two different areas, pharma-
cology on the one hand, and breeding of plants and
animals on the other hand. 

2.1 Enzyme kinetics

As for pharmacology, probably the first math-
ematical model of quantitative biology was the
Michaelis-Menten theory of enzyme kinetics
(Michaelis and Menten, 1913)(Cornish-Bowden,
2013)(Cornish-Bowden, 2015). Decomposing an
enzyme's E reaction with a substrate A into the
steps of substrate binding, reaction catalysis, and
product B release (Schnell, 2014)

which can be described by the set of differential
equations for E, A, and their complex E:A

The corresponding equation for the reaction rates
(Michaelis-Menten equation) reads (Pinto and Mar-
tins, 2016)

with A0 the initial substrate concentration, vmax =
k2∙E0 , E0 the initial enzyme concentration, and
Km = (k-1+k2)/k1, the Michaelis constant. The theo-
ry developed by Michaelis and Menten, provided
the foundation for quantifying physiology and phar-
macology (Dost, 1953). It plays an important role in
drug development, still today. 

2.2 Quantitative genetics – the breeders' equation

Following the ideas of Darwin and Mendel, peo-
ple tried to understand and started to predict, there-
by optimizing, breeding of plants and animals on
the basis of the so-called breeder's equation (Lush,
1937)(Ollivier, 2008). This simple equation 
allows to estimate the change (response ∆Z) in
occurrence of a particular quantifiable trait in the

off-spring generation due to selection for this trait
in the parent generation. h2 is called the heritabil-
ity, S is the so-called selection differential, which
represents the difference of a trait's average value
in the respective whole population and the aver-
age value in the selected subpopulation. Remark-
ably, this equation is independent of molecular
genomic details, which is the basis for its present-
day role in theoretical genomics (Visscher et al.,
2008). It should be noted that this early mathe-
matical model being used in quantitative biology,
had commercial applications from its very begin-
ning. 

2.3 Bioinformatics

The impressive development of DNA, RNA, and
peptide sequencing that we see today, was possi-
ble only through the collaboration of three disci-
plines, bioinformatics, computer technology, and
sequencing technologies. Bioinformatics provided
the mathematical and statistical tools to structure,
analyze, and annotate biologically, what had been
produced with sequencing machines. High-per-
formance computers were needed, to handle and
process the related data, which still today is the
core of bioinformatics.

2.4 Molecular phylogeny

Many authors see the actual initialization of
bioinformatics in a paper about molecular evolu-
tion by Emile Zuckerkandl and Linus Pauling (Zuck-
erkandl and Pauling, 1962)( Zuckerkandl and Paul-
ing, 1962b)(Zuckerkandl and Pauling, 1965). They
recognized the relationship between sequence vari-
ation and evolution, defining the foundations of
phylogeny, a methodology, still popular today
(Lemoine et al., 2018) in sophisticated versions as
probabilistic models of evolution. 

2.5 Sequence analysis: comparison, alignment, and
pattern recognition

The key aspect of sequence analysis is compar-
ison (Pearson and Lipman, 1988) to find and quan-

(1)

(2)

(5)

(6)

(3)

(4)



Journal of Business Chemistry 2018, 15 (2) © Journal of Business Chemistry80

Quantitative biology – a perspective for the life sciences' way into the future 

tify similarity in sequences and accordingly in func-
tion. In the beginning, this was based on alignment,
the most important methods being the Needle-
man-Wunsch algorithm (Needleman and Wunsch,
1970) for global alignment and the Smith-Water-
man algorithm (Smith and Waterman, 1981) for
local alignment. The complications arising from
sequence insertions, deletions, and mutations can
be managed by statistical scoring systems, which
bear some analogy to the concept of entropy in
information theory (Altschul, 1991). Thus, scoring
not only takes into account identities, but also
homologies, i.e. sequence elements, which could
be exchanged "easily" in the course of evolution
without loss of function, and therefore can be clas-
sified as being equivalent. With the growing size
of sequence databases, more efficient algorithms,
which computationally are less demanding, have
been formulated. The most popular one today is
the BLAST algorithm (Altschul et al., 1990), provid-
ing a quantitative measure for sequence homolo-
gy in terms of the so-called expectation value (E-
value), which is the probability of the respective
alignment being purely by chance. The lower the
E-value, the more significant is the homology.

Based on pairwise alignment, algorithms for
multiple sequence alignment have been developed.
From the comparison of a set of DNA or peptide
sequences they can generate what is called a con-
sensus sequence, i.e. stretches of sequence that are
identical or closely related, while other ranges of
the sequences differ more or less significantly by
mutations, insertions or deletions. The most wide-
ly used software systems today are the different
versions of CLUSTAL (W and X) (Larkin et al., 2007). 

2.6 Pattern recognition in sequence analysis

An important result of sequence comparison is
the identification of sequence pattern, which typ-
ically provide two kinds of information. Firstly, com-
mon, i.e. evolutionary conserved patterns indicate
phylogenetic relationships (Fitch and Margoliash,
1967) in a quantitative manner. Secondly, sequence
pattern can be correlated with genetic and molec-
ular function. To this end, starting from classifica-
tion and clustering, algorithms for pattern recog-
nition have been developed (de Ridder et al., 2013).
These algorithms also paved the way into machine
learning (Baldi and Brunak, 2001) and big data,
which was achieved by introducing probabilistic
frameworks for the respective models. Building sta-
tistical models on the basis of existing data bears
a lot of uncertainty, which makes the difference
between inference and deterministic conclusion.
In statistics, there two different philosophies con-
sidered, the Fisher philosophy, also called the fre-
quency approach, and the Bayes philosophy, using
prior and posterior distribution knowledge (Leonard
and Hsu, 1999), in other words conditional proba-
bilities. It has been shown that Bayesian methods
are the most appropriate approach for modeling
of biological systems, because it readily allows ana-
lyzing data against the background of their actu-
al biological context (Gupta, 2012). 

2.7 Some Remarks on Machine Learning

Machine learning is an important aspect of arti-
ficial intelligence (Carbonell et al., 1983). The origin
of machine learning goes back to the late 50s. It
was characterized as a " … field of study that gives
computers the ability to learn without being explic-

Machine Learning

Unsupervised Learning

Supervised Learning 

Clustering

Classification

Regression

Figure 1 Schematic of machine learning. Machine learning can be realized by two different strategies. Unsupervised lear-
ning only uses input data and identifies structures in the data. Supervised learning uses training data to create a predicti-
ve data model, which subsequently is applied to new input data. Typically, supervised learning is done in a recursive man-
ner, thereby refining the predictive data model more and more (source: Mathworks Inc. 2017).  
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itly programed" (Samuel, 1959). It is seen as the right
choice for solving problems that cannot be tack-
led by pure computing. This, of course, is not only
of interest for the life sciences. The financial indus-
try is using machine learning (Mark et al., 2018) for
management of the risks in stock market trading
and credit issuing (Fagella, 2018). Furthermore, it is
also used in marketing (Chow, 2017), for numerous
popular web services (Luckow et al., 2017), in man-
ufacturing, energy production, as well as for auto-
motive, public transport, and aviation maintenance
prediction (MathWorks, 2018).

The most important method in what is called
unsupervised machine learning is clustering (Fil-
ippone et al., 2008), i.e. distinguishing and group-
ing elements into subsets of a given set of input
data based on a measure of similarity applied to
the characteristic features of the elements (see fig.
1). With respect to post-processing, this is a divide-
and-conquer strategy, because the overall size of
a data analysis challenge can be split into analyz-
ing a number of subsets. 

Supervised learning is based on experience, i.e.
data analyzed for training a particular statistical
model obtained through clustering, classification
and regression. New input data can then be
processed by the trained, predictive model to gen-
erate new information. This is done typically in a
recursive manner to optimize the parameters of
the predictive model. 

In general, machine learning is used for data-
driven applications and hence requires enormous
computing power. For many successful applica-
tions, two technological infrastructure innovations

have been very important, cloud computing and
the involvement of graphical processor units in so-
called GPU computing. 

2.8 Hidden Markov models

An important machine learning methodology
in quantitative biology is realized by so-called Hid-
den Markov Models (HMMs) (Baldi and Brunak,
2001b). They are tools to analyze serial data like,
e.g. time series or biological sequences. In the com-
parison of sequences (Krogh, 1994), they are used
to find relationships between sequences by a prob-
abilistic random walk through a series of states in
sequence space (Markov chain). Depending on the
selected parameters, new states are either accept-
ed or rejected. Starting from an initial sequence,
intermediate sequence states are generated by
transitions generated by local repetition, mutation,
insertion, and deletion of sequence elements (Fig.
2). Sequence elements can be nucleobases and
amino acids, but also sequence pattern like, e.g.
base triplets or higher multiplets, amino acid pat-
tern characteristic for a particular folding or func-
tion. Accordingly, there are specific transition and
emission parameters for sequence elements. In
terms of Bayesian probabilities, this gives a quan-
titative measure of relatedness with respect to the
section of the sequence space, reached by the
Markov chain.

Usually, a set of refence sequences is taken to
train the model and generate its parameters (Ras-
mussen and Krink, 2003). After optimization the
set of parameters obtained in the individual main

deli

maini End

insk

Start

Delete states 

Main states

Insert states 

Figure 2 Standard Architecture of a HMM for sequence analysis. Each box represents a particular sequence state, derived
from the start sequence and generated along a series of transformations, represented by the arrows. The number of boxes
in the middle row (backbone) corresponds to the average length of the starting sequences considered. The horizontal arrows
in the backbone of the HMM represent a linear Markov chain, a random walk through a series of sequences (the main states),
which all have the same length L and differ from their precursor by just one sequence element. Boxes in the upper row cor-
respond to states with deletions of sequence elements, while those in the lower row correspond to insertions of sequence
elements. The reflexive circles at the insertion boxes allow variable lengths of insertions through repetition. Each arrow in
the schema is associate with a transition probability (source: Baldi and Brunak, 2001).
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Figure 3 Perceptron. The perceptron is the building block of feed-forward Artificial Neural Networks. Each input value xi0

from the nodes in the input layer (0) is multiplied with the specific weight factor w0i for the respective connection to a
node in the next layer (1), where it is combined with weighted data from other input nodes to calculate the so-called pre-
activation function z. To control the forward feed of the perceptron, a bias node b is added to layer (1). A convolution of z
with an appropriate activation function z (here it is the logistic function) produces the output of the shown perceptron
(source: own representation).

and intermediate states carry important informa-
tion about the sequences involved. Typical appli-
cations are the identification of coding areas and
protein binding sites of DNA strands. 
It should be noted that Hidden Markov Models are
also used in speech recognition, optical character
recognition, and industrial process control (Wind-
mann et al., 2016). Furthermore, due to their lay-
ered structure, Hidden Markov Models are closely
related to, or may even be seen as a special case of
so-called neural networks, actually one of the most
important concepts in machine learning. 

2.9Artificial neural networks, convolutional
neural networks, and self-organizing maps

As the name already indicates, artificial neural
networks (ANNs) have their origin in the attempt
to simulate and understand the characteristics of
biological neurons. The human brain is assumed
to consist of about 100 x 1012 neurons (Herculano-
Houzel, 2009) and about ten times as many glial
cells, involved in a large number of specific net-
works by synaptic connections. On arrival at the
synapse which is formed by an axon terminal of
the emitting neuron and a dendrite of the receiv-
ing neuron, and often coupled to a glial cell, the
electrical signal is transferred by neurotransmit-
ters and, may be maintained, enhanced, attenuat-
ed, or averaged over several signals in the postsy-
naptic neuron. This behavior has been modeled by
so-called perceptrons (McCulloch and Pitts,
1943)(Rosenblatt, 1958)(Stansbury, 2014)(Stansbury,
2014b) (Fig. 3). 

Each input value xjλ-1 in the input layer (λ-1=0)
is multiplied with a weight factor wjλ specific for
the connection to a node in the next layer λ. In each
node, the incoming weighted data items are
summed up and can be modified by the parameter
bλ of a so-called bias node. The expression 

is sometimes called the pre-activation function
of the signal and is the summation over all data
items coming in from all the nodes of the previous
layer. The actual activation function is typically a
convolution to normalize z to the interval [0,1],
which is achieved, e.g. by the sigmoid logistic
function

The value of yjλ calculated in each node of the
layer becomes an input signal for all the nodes of
the next layer (yjλ → xjλ+1 ) (Fig. 4). 

According to the nature of the problem and the
kind of data available, the number of nodes per
layer can vary. Each node in layer λ-1 is connected
to each node in the next layer λ, and every data
item of a given layer is send to all nodes in the suc-
cessive layer and multiplied with a weight factor,
specific for the particular connection. Accordingly,
the number of parameters in an ANN is of the order
of N∙L, with N the average number of nodes per
layer and L the number of layers. 

Parametrization of ANNs is usually subject to
supervised learning. An input vector x ⃗ is taken
together with an initial guess of the parameters

(7)

(8)
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Figure 4 An Artificial Neural Network.  An artificial neural network in the feed-forward architecture is shown with two hid-
den layers with 3 and 2 perceptrons, respectively, and one node in the output layer. Training the network by back-propa-
gation requires to minimize the deviation of the result vector 𝑟 from a target vector 𝑡 by gradient-descent of the parameters𝑤 �⃗� and 𝑏𝜆 for each layer (source: own representation).

{π=(w ⃗λ,bλ ),1≤λ≤L} and {bλ,1≤λ≤L} and the output
vector of the final layer r ⃗ is calculated. The output
is compared to a vector of target values t ⃗. The dif-
ference 

has to be minimized, which can be achieved by the
so-called gradient descent method with backprop-
agation. This requires to calculate the gradients

and 

from which corrections for the respective layer
can be determined. Back propagation means that,
beginning with the output layer, this procedure has
to be repeated for each anterior hidden layer. It
should be noted, however, that the gradient descent
method is subject to the multiple minima prob-
lem. Together with the substantial number of nec-
essary parameters, this is rendering ANNs compu-
tationally demanding. Even though, ANNs have a
really wide spectrum of applications in science
(Musib et al., 2017), medical diagnosis (Kononenko,
2001)(Shen et al., 2017)( Ting et al., 2018), and the
industrial context (Lennox et al., 2001).

Recent developments in the field of ANNs go

beyond the feed forward architecture. To allow for
more flexibility, the number of hidden layers has
been augmented. In addition, so-called convolu-
tional neural networks (CNNs) have dropped the
restriction of forward transfer and also include con-
nection between nodes within a layer and loops
around nodes. The advantage is in the possibility
to analyze the data in a hierarchical manner, which
is very helpful in image processing and text analy-
sis. Furthermore, CNNs can be used in an unsuper-
vised learning mode (Radford et al., 2016). Working
with multi-layered ANNs and CNNs is often called
deep learning and has become an integral part of
the software infrastructure of many web portals
(Hern, 2016)(Abdulkader et al., 2016). It is also the
basis of what is called predictive analytics (Siegel,
2016), a methodology that is likely to gain enor-
mous influence on web-based business models.
Even though, however, impressive progress in han-
dling complexity has been made, the level reached
today is still negligible compared to the complex-
ity of the human brain (Koch, 2012). 

Another type of neural networks is the self-
organizing map (SOM), which has been inspired by
the relationship between an image on the eyes'
retina and the corresponding areas in the visual
cortex of the brain. Accordingly, SOMs seek to map
a dense or contiguous high-dimensional input space
to a discrete low-dimensional output space (Koho-
nen, 1958), thereby compressing information. SOMs
belong into the class of non-supervised learning

(9)
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neural networks. In practice one takes a set of nodes
representing the input data, the input layer, and
maps it to another set of nodes, the computation-
al or output layer. Consequently, the assignment
of input nodes to computational nodes is based on
competition and collaboration between the com-
putational nodes. In an iterative procedure, the
weights and interaction parameters of the individ-
ual computational nodes are adjusted to enhance
vicinity to the input nodes based on a (projected)
distance criterion. Typical applications are the opti-
mization of trajectories for robots (Stergiopoulos,
2012), language recognition, signature recognition,
face recognition, seismic data analysis, engineer-
ing (Simula et al., 1999), and industrial process con-
trol (Frey, 2012). In addition, SOMs have also been
used in computer-assisted drug design (Reker et
al., 2014) for drug target profiling. 

2.10 Computer-assisted molecular design and
biomolecular structure prediction

The use of computers in visualizing three-dimen-
sional molecular structures dates back into the
1980s years (Frühbeis et al., 1987). Quantitative
structure-activity relationships based on the com-
parison of molecular structures and their physical,
chemical, biological, pharmacological and toxico-
logical properties have been used to design and
develop new chemical entities for the respective
purposes, ever since (Schneider and Fechner, 2005).
Later on, this has been complemented by methods
of computer-assisted synthesis planning (Hoff-
mann, 2009). In parallel, sophisticated algorithms
have been developed, which are able to predict the
structure of biopolymers. A particular challenge is
the assessment of folding and self-organization of
the molecules. In principle, so-called ab-initio pre-
diction of structures is possible, but computation-
ally very demanding. The requirements of accura-
cy of the necessary parameters are enormous. Other
approaches start from the prediction of secondary
structure elements, whose self-organization is then
searched to complete the structures. Quite success-
ful are pragmatic methods, which predict struc-
tures on the basis of sequence homology to biopoly-
mers with known tree-dimensional structures
(Krieger et al., 2003). The large amount of struc-
tures (140591) (RCSB PDB, 2018) published in the
RSCB Protein Data Bank (Berman et al., 2018)
obtained by x-ray crystallography, multi-dimen-
sional NMR measurements, neutron scattering,
and cryo-electron microscopy support this approach
significantly. Due to its convenience, homology
modeling is widely used in the research and devel-
opment departments the pharmaceutical indus-
try for what is called structure-based or rational

Quantitative biology – a perspective for the life sciences' way into the future 

drug design. Drug target structures are used for
so-called in-silico screening, which is a computa-
tional method of estimating target affinities and
rate drug candidates, before they have been syn-
thesized. It can be seen as an option to reduce the
amount of chemical syntheses necessary for the
development of new drugs (Caldwell, 2015). 

2.11 Modeling of biological systems

An important branch of quantitative biology is
the modeling of biological systems (Gunawarde-
na, 2014). The targets of modeling range from molec-
ular aggregates to pathways, to cells, to organisms,
and populations. The phenomena considered com-
prise, e.g. material and heat flux balance, metabol-
ic flux analysis, and population dynamics (Shimizu
and Matsuoka, 2015). The challenge, but also the
motivation, is in modeling and thereby improving
comprehension of biological systems' inherent com-
plexity, a situation, also envisioned in medicine
(Harz, 2017). 

There are basically four different directions in
biological systems' modeling. These are (i) the mech-
anistic modeling of processes at various levels, (ii)
the deterministic simulations, using methodolo-
gies originating from many-particle physics and
fluid-dynamics, (iii) artificial neural and other net-
works, and (iv) models based on virtual reality, which,
by means of man-machine interfaces are support-
ing human activities and interventions to biologi-
cal systems.

2.12 Mechanistic modeling and kinetic biological
models

The dynamics of a biological system has two
aspects, internal dynamics and the interaction and
exchange with the system's environment. On a cel-
lular level, this comprises signaling, metabolism,
and material transportation. In addition, there is
the dynamics of growth, regeneration, and repli-
cation, at cellular and organismal level (Chara et
al., 2014). Models used in this context are usually
systems of ordinary differential equations (ODEs).
Examples are kinetic models, and reaction-diffu-
sion models (Britton, 1986)(Volpert and Petrovskii,
2009), also named Turing models (Turing, 1952),
which are the most important models to represent
the dynamical behavior of living systems (Raue et
al., 2013). The dynamics of pattern formation (Kondo
and Miura, 2010) and wave propagation, e.g. in sig-
nal transduction, gene expression (Gaffney and
Monk, 2006), tumor growth, and population growth,
can be modeled on the basis of equations like shown
in Fig. 5. 

A versatile open source software system for
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Figure 5 The Reaction-Diffusion Model. The local concentration of a material 𝑢 is influenced by its formation, degradati-
on, and diffusion. In a multi-component system with 𝐹=𝐹(𝑢,𝑣,𝑤, ⋯), the respective differential equations may no longer
be separable (source: own representation).

building and analyzing such kind of models is MOR-
PHEUS (Starruß et al., 2014).

2.13 Deterministic and stochastic modeling

In combination with simulations of the time
evolution, deterministic models, which have been
developed for molecular or particle dynamics
(Vlachakis et al., 2014), and fluid dynamics are used
to study, e.g. the system's response to perturba-
tions (Marshall, 2017). For mechanical systems, deter-
ministic models are based on equations of motion
that describe the dynamics of the system modeled.
By simulation, one obtains a trajectory, document-
ing the time evolution of the model under the given
conditions. Stochastic methods are used for sys-
tems with significant noise, which can be repre-
sented by random fluctuations. Typical examples
are populations (Sharkey, 2011), whose size fluctu-
ates due to death and reproduction. 

Rather than looking at a definite trajectory, the
Monte-Carlo method (Frenkel, 1990) can be used
for scanning the models' phase space by an appro-
priate random walk, to guarantee ergodicity of the
scan. Monte-Carlo methods are often used for high-
dimensional systems with many internal interac-
tions. 

2.14 Probabilistic biological models

Data-driven biological models are used at all
biological levels. For problems that are not clearly
deterministic, like establishing relationships
between molecular interactions, genetic predispo-
sition, and physiology, models based on Bayesian
statistics like HMMs are preferred also in medicine
(Couzin, 2004). There are numerous initiatives to
take what is called computational medicine to the
clinic (Winslow et al., 2012). Models at population

level are of particular interest in epidemiology and
public health surveillance (Zhang et al., 2013). 

2.15 Modeling biological networks

Inside living cells, there are two kinds networks,
the network of molecular interactions and the
genetic network of genes. While the network of
molecular interaction is the physical backbone of
cellular functions, the genetic network is an infor-
mation network (Sharan and Ideker, 2006). Like the
genetic code itself, both networks underlie evolu-
tionary changes, and homology of networks is valu-
able information, e.g. in the field of synthetic biol-
ogy and in the design of molecular machines. On
the basis of graph theory (Friedman, 2004), these
networks serve to visualize and structure data of
gene expression (Liu, 2018), proteomics, and metab-
olism. They are the basis for information resources
and simulation models for signaling as well as
metabolism of cells. Examples are the E_CELL sys-
tem for generic cell simulations (Tomita et al., 1999),
the EcoCyc system (Keseler et al., 2009) for
Escherichia coli, and the BioCyc system (Karp et al.,
2017) comprising Bacillus subtilis, Saccharomyces
cerevisiae, and Homo sapiens (Romero et al., 2004). 

2.16 Biological models for virtual and augmented
reality

Virtual reality is based on image data in com-
bination of hardware for graphical display, audio,
and hardware for haptic interaction and control.
Together, this is an example of a man-machine
interface and has its roots in flight simulators. But
the use of virtual reality has a long tradition also
in medicine (Kaltenborn, 1993). It is nowadays well
established for surgical education and training (van
der Meijden and Schijven, 2009), and also applied
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D
eg

ra
da

tio
n



ing medications, can be curative, or can serve for
disease maintenance. But they can also be just pal-
liative, if the stability of a patient's status cannot
be maintained any longer. In recent decades, this
has been a comfortable situation for the pharma-
ceutical industry in that drugs were administered
for an ever-increasing time span between initial
diagnosis of an indication and the death of the
patient. 

The growing financial burden emerging from
healthcare systems all over the world (Cunning-
ham, 2010)(Dickman et al., 2016), however, has pro-
voked criticism of the pharmaceutical industry's
business model (PriceWaterhouseCoopers,
2009)(Tyson, 2015). In addition, reimbursement of
new drugs that the pharma industry is bringing to
the market, is more and more coupled to proven
superiority with respect to drugs already on the
market. Furthermore, agreements on outcome-
based reimbursement between pharmaceutical
companies and health insurances are becoming
more and more common. This puts the pharma-
ceutical industry under enormous innovation pres-
sure (Taylor, 2015)(Thakor et al., 2017), in particular
against the background of difficulties in feeding
the R&D pipelines and attrition rates of 80-90%
on the way to approval (Caldwell, 2015)(Elsevier
white paper, 2017). On the long term it is clear that
the pharmaceutical and healthcare industry can-
not just continue to optimize existing methodolo-
gies and processes. Instead, the data-driven
approaches of quantitative biology are an option,
to make use of recent scientific progress, chang-
ing business models at the same time. 

5 Recent scientific progress: options for
the healthcare industry

Biological research of recent decades has brought
out a number of remarkable achievements. It can
be seen already today in science that future progress
is coupled to data-driven methodologies of quan-
titative biology, described in the sections above.
Healthcare systems and healthcare industry will
have to integrate this kind of methodologies to be
able to capture the full potential of the new achieve-
ments. Some important examples are given in the
following.

Non-coding RNAs that are transcribed from the
respective stretches of the genomic DNA, but not
further translated into polypeptides exist in virtu-
ally all types of cells in all three domains (archaea,
prokaryotes, eukaryotes) of biology. A special class
of those endogenic RNAs, the micro-RNAs, have
been shown to be involved in the regulation of gene
expression (Morris, 2008). Being also part of an
additional system of inter-cellular, inter-tissue, and

in the recovery of stroke patients (Laver et al.,
2012)(Henderson et al., 2007) and general traumat-
ic brain injury (Zanier et al., 2018). The underlying
data are partly based on geometrical models and
partly on photographic images, which, after appro-
priate image processing are merged with the math-
ematical model.

Augmented reality is the combination of real-
time visual perception with data and information
from other sources. A typical example is the head-
up display in aircrafts and cars. Information, which
usually is not visible while looking out of the front
window is projected on the window overlaying the
view through the window. This principle is used,
e.g. in liver surgery. The problem of liver surgery is
related the complex vascular networks of this organ,
which can easily be destroyed by surgical interven-
tions, e.g. to remove a tumor, or in liver transplan-
tation. Software systems have been developed that
are able to generate a geometrical model of a
patient's liver from magnetic resonance tomogra-
phy (MRT), x-ray computed tomography (CT),
positron emission tomography (PET), or ultrasound
tomography. The visualized geometrical model of
the liver can be used to plan the surgical interven-
tion (Reitinger et al., 2006), and in real-time to sup-
port surgeons by projecting the blood vessels onto
the surface of the organ (Christ et al., 2017). 

3 The present situation

Even though, in the course of the last two cen-
turies, scientists have accumulated a plethora of
biological observations, data, and knowledge,
numerous open questions and uncertainties are
still left (Levin, 2006)(Adams, 2013). Hence, to
advance life sciences and its applications, and
exploitations, many experts see the necessity of
interdisciplinary collaborations of biologists, stat-
isticians, and mathematicians (Hastings, 2005)(Hef-
felfinger et al., 2004), which actually is the core of
data-driven quantitative biology. It is important
now, to enable and support such collaborations,
not only for academic research, but also for life sci-
ences industries' research and development. It
should be noted, however, that such collaborations
are not trivial, due to differences in terminology
and methodology (Ledford, 2015). In other words,
progress based on data and innovative methods,
is not an automatism. The way has to be paved
(Bialek and Botstein, 2004).

4 Future options for medicine and the
healthcare industry

The pharmaceutical industry is in a difficult sit-
uation. Therapeutic medical interventions, includ-
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inter-species communication, they are released,
together with proteins, other types of RNA, and also
DNA, in extracellular vesicles, which in turn can be
internalized by other cells. The molecular load of
such vesicles has been recognized as a source of
useful biomarkers and diagnostics for many dys-
functional phenomena and disease states (Mack,
2007)(Wang, et al., 2016). 

A special class of small non-coding RNAs are
the small inductive RNAs (siRNAs) (Zamore et al.,
2000)(Ivanova et al., 2006). In contrast to the microR-
NAs they are double-stranded and exogenic. In the
hands of molecular biologists, they serve as an
important possibility for handling and controlling
living cells, e.g. stem cells. They too, are a means of
controlling gene expression, and probably will
belong to new therapeutic tool boxes for future
therapeutic concepts in molecular and systems
medicine (Wittrup and Lieberman, 2015).

Another important achievement is the possi-
bility to analyze single cells (Wang and Bodovitz,
2010)(Grün and van Oudenaarden, 2015)(Wang and
Navin, 2015), comprising genomics, transcriptomics,
proteomics, and metabolomics at single cell reso-
lution. Though the majority of applications is in
cancer research and has provided deep insight into
the cancer genome and tumor development (Zhang
et al., 2016), there are also applications in neurolo-
gy and microbiome research. Altogether, this gives
a new perspective for the meaning of precision or
evidence-based medicine (Harz, 2017). 

The ability, to induce pluripotent human stem
cells from adult human skin cells (Takahashi et al.,
2007) has opened up entirely new and ethically
acceptable perspectives for regenerative medicine
(Kang et al., 2016). This has to be seen also against
the background of the status of synthetic biology
(Cameron et al., 2014), which is about to become
an important factor in the synthesis of drugs (Pad-
don and Keasling, 2014). In addition, particular appli-
cations for the medical sector begin to show prom-
ising results in diagnostics (Slomovic et al., 2015),
the treatment of infectious diseases by bacterio-
phages and the treatment of cancer by means of
engineered bacteria (Ruder et al., 2011), and the use
of engineered bacteria (Zhou, 2016) and blood cells
(Alapan et al., 2018) as drug carriers. 

The spectacular accomplishment of utilizing
the prokaryotic immune system for genome edit-
ing by means of the CRISPR-Cas9 system and com-
parable systems (Garrett et al., 2011)(Gaj et al.,
2013)(Lee et al., 2018)(Behler et al., 2018), is a break-
through for synthetic biology and likely to induce
a substantial change of paradigm in the future of
healthcare. The possibility of directly curing genet-
ic diseases appears in a new light. Not disregard-
ing safety and ethical issues, one has to note that

genome editing is about to bring therapeutic inter-
ventions to a new level that is likely to reduce the
duration of treatments drastically. This should be
kept in mind, when talking about the cost of med-
ical genome editing.

The consequent advancement of using large
biomolecules for therapeutic purposes is the
employment of patients' own modified cells, which
is another application of synthetic biology. In the
future, autologous stem or progenitor cells, mod-
ified by genome editing will be used to treat can-
cer, genetic diseases, and retroviral infections. Such
therapeutic cells are an example of what is called
advanced therapy medical products (ATMP) (Hanna
et al., 2016). Of course, several hurdles still have to
be surmounted. One of them is given by the situ-
ation that programming of autologous cells has to
be done in a near-patient setting, which typically
does not meet GMP requirements and hence will
need special attention and care of regulatory agen-
cies (Maciulaitis et al., 2012). 

On the other hand, production and routine appli-
cation of ATMPs requires personnel with new qual-
ifications, different from current medical and health-
care educational profiles. It can be expected that
there will be a new kind of industry, let's call it the
"advanced therapeutic industry", which will be man-
ufacturer and service provider at the same time.
Due to the complexity of the related liability situ-
ation, it is not very likely that the traditional "big
pharma" industry will be directly involved in this
kind of healthcare business. 

It is easy to imagine that the new scientific and
technological trends, based on data-driven meth-
ods, need special expertise. The data scientist will
have a key function in future developments (Marx,
2013), be it in a scientific or a commercial environ-
ment. Of course, there will be different "flavors"
depending on the origin and type of data. Accord-
ingly, besides the qualification in computer science,
statistics, and mathematics, data scientists will
need further training in the fields of origin of the
data. Universities are required to pave the way
defining and configuring the respective curricula.

In summary, modern methods and technolo-
gies, which have found their way into the life sci-
ences enable to look at living systems with an
unprecedented resolution at atomistic, molecular,
meso-, and macroscales. At the same time, gigan-
tic amounts of data are generated and need care-
ful data-driven analysis, to really capture the value
of these data and to augment knowledge and
understanding. For the future, this will be a sound
basis for commercial exploitation of the new
methodologies and technologies. Let me conclude
with a statement by Nobel laureate Richard Feyn-
man who said: "People who wish to analyze nature
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without using mathematics must settle for a
reduced understanding." 
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